Abelian Maps, Braces, and Hopf-Galois Structures

Alan Koch

Agnes Scott College

Faux-maha, May 25, 2020

Outline

(1) The Problem
(2) The Solution
(3) Brace classes

4 Three Examples
5 It Gets Weirder

6 Open Questions

Recall/Notation/Conventions

Let G be a (finite) group, $N \leq \operatorname{Perm}(G)$.

- We say N is G-stable if it is normalized by $\lambda(G)$.
- Associated to a regular, G-stable subgroup $N \leq \operatorname{Perm}(G)$ is a (skew left) brace (N, \cdot, \circ): two groups satisfying the brace relation

$$
a \circ(b \cdot c)=(a \circ b) \cdot a^{-1} \cdot(a \circ c), a, b, c \in N, a \cdot a^{-1}=1_{N}
$$

We will frequently suppress the dot.

- Regular subgroups account for all finite braces.
- Every brace (N, \cdot, \circ) gives a (non-degenerate set-theoretic) solution to the Yang-Baxter equation, i.e., a map $R: N \times N \rightarrow N \times N$ such that

$$
R_{12} R_{23} R_{12}=R_{23} R_{12} R_{23}
$$

where $R_{i j}: N \times N \times N \rightarrow N \times N \times N$ applies R to the $i^{\text {th }}$ and $j^{\text {th }}$ component.

Laura's Work

Stordy's Senior Thesis describes a solution to the YBE based on a fixed point free abelian endomorphism ψ of G.

Specifically, given $\psi: G \rightarrow G$ the solution obtained is

$$
R(g, h)=\left(\psi\left(g^{-1}\right) h \psi(g), \psi\left(h g^{-1}\right) h^{-1} \psi(g) g \psi\left(g^{-1}\right) h \psi\left(g h^{-1}\right)\right)
$$

Idea

Can this be shown without using regular subgroups and braces? Can we verify it by direct computation?

Yes, eventually.


```
yman
```



```
us toathe aumelus.
```



```
Rystal co vam|macy cteos.
{N\timesv)R(g,k\rangle=(v(h),*(g)),s,\lambda\inC.
```



```
Uang the alecretion abowe allowe ws to rolicee the alowe th
R
```



```
                                    (1)
                                    N(che\mp@subsup{e}{}{-1}\mp@subsup{)}{}{-2})
                                    (2)
```



```
On the sther hati, we. him
```



```
rusch thes becrema
```



```
Date: MTe H. 3me
```

```
(1) (a)
```



```
nuc-ilegengate, Le. that
```



```
lyy the fixol elemant v(0)
```



```
clos.
*ivins, 的-\alpha
```

Figure: It's a little tedious

$R=\left(\psi\left(g^{-1}\right) h \psi(g), \psi\left(h g^{-1}\right) h^{-1} \psi(g) g \psi\left(g^{-1}\right) h \psi\left(g h^{-1}\right)\right)$

The key to showing that R is a solution is the following observation:
If $\psi: G \rightarrow G$ is abelian, then for all $g, h \in G$ we have

$$
\psi\left(\psi\left(g^{-1}\right) h \psi(g)\right)=\psi(h) .
$$

This is not a surprise, but what is a surprise is:
The proof never uses that ψ is fixed point free.

Regular subgroups account for all solutions

\[

\]

But if you drop "fixed point free", the subgroup

$$
N_{\psi}=\{\lambda(g) \rho(\psi(g)): g \in G\}
$$

is irregular: if $\psi(g)=g$ then $\lambda(g) \rho(\psi(g))\left[1_{G}\right]=1_{G}$.
How are we getting solutions to the YBE which don't come from regular G-stable subgroups?

Outline

(9) The Problem

(2) The Solution
(3) Brace classes

4 Three Examples
5 It Gets Weirder
6) Open Questions

Defining a brace

Perspective and notation change. The abelian endomorphisms will often be on a group which we denote N instead of G.

Definition

An endomorphism $\psi: N \rightarrow N$ is said to be abelian if $\psi(N)$ is abelian.
Equivalently, $\psi(a b)=\psi(b a)$ for all $a, b \in N$.

Proposition

Let $\psi: N \rightarrow N$ be abelian. Define a binary operation \circ on N via

$$
a \circ b=a \psi\left(a^{-1}\right) b \psi(a), a, b \in N
$$

Then (N, \cdot, \circ) is a brace, where \cdot is the usual operation on N.

$a \circ b=a \psi\left(a^{-1}\right) b \psi(a)$

We need to show (N, \circ) is a group and that the brace relation holds.
Clearly $a \circ 1_{N}=1_{N} \circ a=a$. For associative:

$$
\begin{array}{rlr}
(a \circ b) \circ c & =\left(a \psi\left(a^{-1}\right) b \psi(a)\right) \circ c & \\
& =\left(a \psi\left(a^{-1}\right) b \psi(a)\right) \psi\left(\psi\left(a^{-1}\right) b^{-1} \psi(a) a^{-1}\right) c \psi\left(a \psi\left(a^{-1}\right) b \psi(a)\right) \\
& =\left(a \psi\left(a^{-1}\right) b \psi(a)\right) \psi\left(b^{-1} a^{-1}\right) c \psi(a b) & (\psi \text { abelian }) \\
& =a \psi\left(a^{-1}\right) b \psi\left(b^{-1}\right) c \psi(b) \psi(a) & (\psi \text { abelian }) \\
& =a \psi\left(a^{-1}\right)(b \circ c) \psi(a) & \\
& =a \circ(b \circ c) . &
\end{array}
$$

$a \circ b=a \psi\left(a^{-1}\right) b \psi(a)$

Let $x=\psi(a) a^{-1} \psi\left(a^{-1}\right)$. Claim $x=\bar{a}$.

$$
\begin{aligned}
a \circ x & =a \psi\left(a^{-1}\right)\left(\psi(a) a^{-1} \psi\left(a^{-1}\right)\right) \psi(a)=1_{N} \\
x \circ a & =\left(\psi(a) a^{-1} \psi\left(a^{-1}\right)\right) \psi\left(\psi(a) a \psi\left(a^{-1}\right)\right) a \psi\left(\psi(a) a^{-1} \psi\left(a^{-1}\right)\right) \\
& =\psi(a) a^{-1} \psi\left(a^{-1}\right) \psi(a) a \psi\left(a^{-1}\right) \\
& =1_{N} .
\end{aligned}
$$

So (N, \circ) is a group; and

$$
\begin{aligned}
(a \circ b) a^{-1}(a \circ c) & =a \psi\left(a^{-1}\right) b \psi(a) a^{-1} a \psi\left(a^{-1}\right) c \psi(a) \\
& =a \psi\left(a^{-1}\right) b c \psi(a) \\
& =a \circ(b c)
\end{aligned}
$$

hence (N, \cdot, \circ) is a brace.

In summary

Proposition

Let $\psi: N \rightarrow N$ be an abelian map.
Then (N, \cdot, \circ) is a brace, where

$$
\begin{aligned}
a \cdot b & =a b \\
a \circ b & =a \psi\left(a^{-1}\right) b \psi(a)
\end{aligned}
$$

This allows for a very easy way to construct (some) braces.

Remark

If ψ is fixed point free then $(N, \circ) \cong(N, \cdot)$.
If ψ has fixed points then (N, \circ) may not be isomorphic to (N, \cdot).

A question of uniqueness

Question

Do different choices of abelian maps ψ give different braces?

Not necessarily.

For example, if $\psi(N) \leq Z(N)$ (center of N) then for all $a, b, \in N$:

$$
a \circ b=a \psi\left(a^{-1}\right) b \psi(a)=a b
$$

and we get the trivial brace (N, \cdot, \cdot).

Adapting Lindsay's Result I

Suppose ψ_{1}, ψ_{2} are abelian maps on N which give the same brace. Then

$$
a \psi_{1}\left(a^{-1}\right) b \psi_{1}(a)=a \psi_{2}\left(a^{-1}\right) b \psi_{2}(a), a, b \in N .
$$

For each a, let $z_{a}=\psi_{2}(a) \psi_{1}\left(a^{-1}\right)$. Then $\psi_{2}(a)=z_{a} \psi_{1}(a)$ and

$$
\begin{aligned}
\psi_{1}\left(a^{-1}\right) b \psi_{1}(a) & =\psi_{1}\left(a^{-1}\right) z_{a}^{-1} b z_{a} \psi_{1}(a) \\
b & =z_{a}^{-1} b z_{a}
\end{aligned}
$$

for all $b \in N$, hence $z_{a} \in Z(N)$ for all a.
Note that $a \mapsto z_{a}$ is a homomorphism since

$$
\begin{aligned}
z_{a b} & =\psi_{2}(a b) \psi_{1}\left(b^{-1} a^{-1}\right)=\psi_{2}(a)\left(\psi_{2}(b) \psi_{1}\left(b^{-1}\right)\right) \psi_{1}\left(a^{-1}\right) \\
& =\psi_{2}(a) z_{b} \psi_{1}\left(a^{-1}\right)=\psi_{2}(a) \psi_{1}\left(a^{-1}\right) z_{b}=z_{a} z_{b} .
\end{aligned}
$$

This homomorphism is clearly abelian.

Adapting Lindsay's Result II

Conversely, let ψ_{1}, ψ_{2} be abelian maps on N such that $\psi_{2}(a)=z_{a} \psi_{1}(a)$ for all $a \in N$, where $z_{a} \in Z(N)$.

Denoting the corresponding circle operations by o_{1} and o_{2},

$$
\begin{aligned}
a \circ_{2} b=a \psi_{2}\left(a^{-1}\right) b \psi_{2}(a) & =a \psi_{1}\left(a^{-1}\right) z_{a}^{-1} b z_{a} \psi_{1}(a) \\
& =a \psi_{1}\left(a^{-1}\right) b \psi_{1}(a) \\
& =a \circ_{1} b .
\end{aligned}
$$

Letting $\zeta(a)=z_{a}$ gives:

Proposition

Two abelian maps ψ_{1}, ψ_{2} give the same brace if and only if $\psi_{2}(a)=\zeta(a) \psi_{1}(a)$ for some homomorphism $\zeta: N \rightarrow Z(N)$.

Brace to regular subgroup?

With ψ as above, (N, \cdot, \circ) is a brace.
We can realize (N, \cdot) as a subgroup of $\operatorname{Perm}(N, \circ)$ via

$$
a[b]=a \cdot b .
$$

If (N, \circ) is isomorphic to some abstract group G, say $\phi:(N, \circ) \rightarrow G$, then we can view $N \leq \operatorname{Perm}(G)$ via

$$
a[g]=\phi\left(a \cdot \phi^{-1}(g)\right) .
$$

This construction is one pullback of the map
$\{N \leq \operatorname{Perm}(G)$ Regular, G-stable $\} \Rightarrow\{(B, \cdot, \circ):(B, \cdot) \cong N,(B, \circ) \cong G\}$.

Outline

(9) The Problem

(2) The Solution
(3) Brace classes
(4) Three Examples

5 It Gets Weirder

6 Open Questions

The proposition, and the problem

Proposition (The proposition)

Let ψ be an abelian map on ($N, \cdot \cdot$), and let (N, \circ) be as defined above. Suppose $\phi:(N, \circ) \rightarrow G$ is an isomorphism.
Then there is a regular, G-stable subgroup $N_{\psi, \phi}=\left\{\eta_{a}: a \in N\right\}$ of Perm(G) given by

$$
\eta_{a}[g]=\phi\left(a \cdot \phi^{-1}(g)\right)
$$

Furthermore, $N_{\psi, \phi} \cong(N, \cdot)$.

Problem

The exact regular subgroup depends on the chosen isomorphism ϕ.
Turns out we get a different, but related, subgroup in general when we use a different isomorphism $(N, \circ) \rightarrow G$.

Brace equivalence

Definition

Let G be a finite group, and let N_{1}, N_{2} be regular, G-stable subgroups of Perm(G). We say N_{1} and N_{2} are brace equivalent if their corresponding braces are isomorphic. An equivalence class of regular subgroups is called a brace class.

It is known that the brace class containing N is

$$
\left\{\varphi^{-1} N \varphi: \varphi \in \operatorname{Aut}(G)\right\}
$$

Varying ϕ

If $\phi_{1}, \phi_{2}:(N, \circ) \rightarrow G$ are isomorphisms then their corresponding regular, G-stable subgroups N_{1}, N_{2} are brace equivalent. (Clear.)
Conversely, if N_{1}, given by an abelian map ψ and a chosen isomorphism $\phi_{1}:(N, \circ) \rightarrow G$, is brace equivalent to N_{2}, then $N_{2}=\varphi^{-1} N_{1} \varphi$ for some $\varphi \in \operatorname{Aut}(G)$.
For any $\eta_{a}^{\prime}=\varphi^{-1} \eta_{a} \varphi \in N_{2}$ we have

$$
\begin{aligned}
\eta_{a}^{\prime}[g] & =\varphi^{-1} \eta_{a} \varphi[g] \\
& =\varphi^{-1} \eta_{a}[\varphi(g)] \\
& =\varphi^{-1} \phi_{1}\left(a \cdot \phi^{-1}(\varphi(g))\right) \\
& =\left(\varphi^{-1} \phi_{1}\right)\left(a \cdot\left(\varphi^{-1} \phi_{1}\right)^{-1}(g)\right)
\end{aligned}
$$

Let $\phi_{2}=\varphi^{-1} \psi_{1}$. Then $\phi_{2}:(N, \circ) \rightarrow G$ is an isomorphism and $\eta_{a}^{\prime}=\phi_{2}\left(a \cdot \phi_{2}^{-1}(g)\right)$.

In summary

Given an abelian map ψ, the set of regular subgroups obtained forms an entire brace class.

Note: K.-Truman previously established this in the case ψ is fixed point free and abelian.

Outline

(9) The Problem

(2) The Solution
(3) Brace classes

4 Three Examples
(5) It Gets Weirder
(6) Open Questions

Recovering Lindsay

Suppose $\psi: G \rightarrow G$ is fixed point free and abelian.
Then $\phi:(G, \circ) \rightarrow(G, \cdot)$ given by $\phi(g)=g \psi\left(g^{-1}\right)$ is an isomorphism:
we have

$$
\begin{aligned}
\phi(g \circ h) & =\phi\left(g \psi\left(g^{-1}\right) h \psi(g)\right) \\
& =\left(g \psi\left(g^{-1}\right) h \psi(g)\right) \psi\left(\psi\left(g^{-1}\right) h^{-1} \psi(g) g^{-1}\right) \\
& =g \psi\left(g^{-1}\right) h \psi(g) \psi\left(h^{-1} g^{-1}\right) \\
& =g \psi\left(g^{-1}\right) h \psi\left(h^{-1}\right) \\
& =\phi(g) \phi(h)
\end{aligned}
$$

and by fixed point freeness, ker ϕ is trivial.
Then (G, \cdot) acts on itself via $g[h]=\phi\left(g \cdot \phi^{-1}(h)\right)$, hence if $h=k \psi\left(k^{-1}\right)$,

$$
\begin{aligned}
g[h] & =\phi(g k)=g k \psi\left(k^{-1} g^{-1}\right)=g\left(k \psi\left(k^{-1}\right) \psi\left(g^{-1}\right)\right. \\
& =g h \psi\left(g^{-1}\right)=\lambda(g) \rho(\psi(g))[h]
\end{aligned}
$$

A dihedral example

Let $N=D_{4}=\left\langle r, s: r^{4}=s^{2}=r s r s=1\right\rangle$.
Define $\psi: D_{4} \rightarrow D_{4}$ by $\psi(r)=1, \psi(s)=s$.
$\psi\left(D_{4}\right)=\langle s\rangle$ so ψ is abelian.
Since $\psi\left(r^{i}\right)=1$ for all $i, r^{i} \circ a=r^{i}$ a for all $a \in N$. Also,

$$
\begin{aligned}
& r^{i} \boldsymbol{s} \circ r^{j}=r^{i} \boldsymbol{s} \psi\left(r^{i} \boldsymbol{s}\right) r^{j} \psi\left(r^{i} \boldsymbol{s}\right)=r^{i} s \boldsymbol{s} r^{j} \boldsymbol{s}=r^{i+j} \boldsymbol{s} \\
& r^{i} \boldsymbol{s} \circ r^{j} \boldsymbol{s}=r^{i} \boldsymbol{s} \psi\left(r^{i} \boldsymbol{s}\right) r^{j} \boldsymbol{s} \psi\left(r^{i} \boldsymbol{s}\right)=r^{i} \boldsymbol{s} \boldsymbol{s} r^{j} \boldsymbol{s} \boldsymbol{s}=r^{i+j}
\end{aligned}
$$

In general, $r^{i} s^{k} \circ r^{j} s^{\ell}=r^{i+j} s^{k+\ell}$ and $(N, \circ) \cong C_{4} \times C_{2}$.
Explicitly, $\phi:(N, \circ) \rightarrow C_{4} \times C_{2}=\langle x, y\rangle, \phi(r)=x, \phi(s)=y$ is an isomorphism.
$\phi:(N, \circ) \rightarrow C_{4} \times C_{2}=\langle x, y\rangle, \phi(r)=x, \phi(s)=y$

$$
r^{i} s^{k} \circ r^{j} s^{\ell}=r^{i+j} s^{k+\ell}
$$

Let us realize N as a subgroup of $\operatorname{Perm}\left(C_{4} \times C_{2}\right)$ using ϕ.
Write $r^{\circ m}=\underbrace{r \circ \cdots \circ r}_{m \text { times }}$.

$$
\begin{aligned}
\eta_{r}\left[x^{i}\right] & =\phi\left(r \phi^{-1}\left(x^{i}\right)\right)=\phi\left(r \cdot r^{i}\right)=\phi\left(r^{i+1}\right)=\phi\left(r^{\circ(i+1)}\right)=x^{i+1} \\
\eta_{r}\left[x^{i} y\right] & =\phi\left(r \phi^{-1}\left(x^{i} y\right)\right)=\phi\left(r \cdot r^{i} s\right)=\phi\left(r^{i+1} s\right)=\phi\left(r^{\circ(i+1)} \circ s\right)=x^{i+1} y .
\end{aligned}
$$

So $\eta_{r}=\lambda(x)$, and

$$
\begin{aligned}
\eta_{s}\left[x^{i}\right] & =\phi\left(s \cdot r^{i}\right)=\phi\left(r^{-i} s\right)=\phi\left(r^{\circ(-i)} \circ s\right)=x^{-i} y \\
\eta_{s}\left[x^{i} y\right] & =\phi\left(s \cdot\left(r^{i} s\right)\right)=\phi\left(r^{-i}\right)=\phi\left(r^{\circ(-i)}\right)=x^{-i}
\end{aligned}
$$

Another dihedral example: $N=\langle r, s\rangle \cong D_{4}$

Define $\psi: N \rightarrow N$ by $\psi(r)=r s, \psi(s)=1 . \psi(N)=\langle r s\rangle$.
Note (consider cases based on parity of i):

$$
\begin{aligned}
r^{i} \circ r^{i} & =r^{i}(r s)^{i} r^{i}(r s)^{i}=1 \\
r^{i} s \circ r^{i} s & =r^{i} s(r s)^{i} r^{i} s(r s)^{i}=1
\end{aligned}
$$

So every nontrivial element of (N, \circ) has order 2 .

$$
(N, \circ) \cong C_{2} \times C_{2} \times C_{2}
$$

Further details are left to the audience.

Outline

(9) The Problem

(2) The Solution
(3) Brace classes
(4) Three Examples
(5) It Gets Weirder
6) Open Questions

ψ is a homomorphism

Let ψ be an abelian map on N, and define (N, \circ) as above.
Then, for all $a, b \in N$,

$$
\begin{aligned}
\psi(a) \circ \psi(b) & =\psi(a) \psi\left(\psi\left(a^{-1}\right)\right) \psi(b) \psi(\psi(a)) \\
& =\psi\left(a \psi\left(a^{-1}\right) b \psi(a)\right) \\
& =\psi(a \circ b)
\end{aligned}
$$

So ψ is an endomorphism of (N, \circ). Furthermore,

$$
\psi(a) \circ \psi(b)=\psi(a \circ b)=\left(a \psi\left(a^{-1}\right) b \psi(a)\right)=\psi(a b)=\psi(a) \psi(b)
$$

shows that:

- $\psi:(N, \cdot) \rightarrow(N, \cdot)$ is an endomorphism
- $\psi:(N, \cdot) \rightarrow(N, \circ)$ is a homomorphism
- $\psi:(N, \circ) \rightarrow(N, \cdot)$ is a homomorphism
- $\psi:(N, \circ) \rightarrow(N, \circ)$ is an endomorphism.

Consequence I

Question

Given the "symmetric interplay" created by ψ, could (N, \cdot, \circ) be a bi-skew brace?

Recall Lindsay's construction (with my notation):

Definition

A triple (B, \cdot, \circ) is a bi-skew brace if both (B, \cdot, \circ) and (B, \circ, \cdot) are braces.

Thus, (B, \cdot, \circ) is a bi-skew brace if (B, \cdot) and (B, \circ) are groups and

$$
\begin{aligned}
& a \circ(b c)=(a \circ b) a^{-1}(a \circ c) \\
& a(b \circ c)=(a b) \circ \bar{a} \circ(a c)
\end{aligned}
$$

hold for all $a, b, c \in B$.

$a(b \circ c)=(a b) \circ \bar{a} \circ(a c)$

Let's see if the second brace relation holds.
Recall $\overline{\mathbf{a}}=\psi(a) a^{-1} \psi\left(a^{-1}\right)$.

$$
\begin{aligned}
a(b \circ c) & =a b \psi\left(b^{-1}\right) c \psi(b) \\
(a b) \circ \overline{\mathbf{a}} \circ(a c) & =a b \psi\left(b^{-1} a^{-1}\right) \psi(a) a^{-1} \psi\left(a^{-1}\right) \psi(a b) \circ(a c) \\
& =a b \psi\left(b^{-1}\right) a^{-1} \psi(b) \circ(a c) \\
& =\left(a b \psi\left(b^{-1}\right) a^{-1} \psi(b)\right) \psi\left(b^{-1}\right) a c \psi(b) \\
& =a b \psi\left(b^{-1}\right) c \psi(b) .
\end{aligned}
$$

Proposition

An abelian map $\psi: N \rightarrow N$ gives rise to a bi-skew brace.

Consequences of Consequence I

10 Minutes ago

An abelian map ψ on N gives a regular, G-stable subgroup of $\operatorname{Perm}(G)$ for some G isomorphic to (N, \circ).

Interesting, but a little backward if you are trying to find Hopf-Galois structures on L / K with $\operatorname{Gal}(L / K)=G$.

Now

An abelian map ψ on G gives a regular, G-stable subgroup $N \leq \operatorname{Perm}(G)$ with $N \cong(G, \circ)$.
ψ on $G \Rightarrow \operatorname{brace}(G, \cdot, \circ) \Rightarrow \operatorname{brace}(G, \circ, \cdot)$.

$\psi: G \rightarrow G$ gives N

This can be made quite explicit, and proven directly. Given ψ, let $N=\left\{\eta_{g}: g \in G\right\} \leq \operatorname{Perm}(G)$, where

$$
\eta_{g}[h]=g \psi\left(g^{-1}\right) h \psi(g)
$$

(So $\eta_{g}=\lambda(g) C\left(\psi\left(g^{-1}\right)\right), C$ conjugation.)
N is regular. If $\eta_{g}[h]=h$ then $g \psi\left(g^{-1}\right) h \psi(g)=h$.
Taking ψ of both sides:

$$
\psi(g h)=\psi(h)
$$

so $g \in \operatorname{ker} \psi$, hence

$$
h=g \psi\left(g^{-1}\right) h \psi(g)=g h
$$

whence $g=1_{G}$.

$\eta_{g}[h]=g \psi\left(g^{-1}\right) h \psi(g)$

N is G-stable. Claim ${ }^{k} \eta_{g}=\eta_{k g \psi\left(g^{-1}\right) k^{-1} \psi(g)}, k \in G$.

$$
\begin{aligned}
{ }^{k} \eta_{g}[h] & =k \eta_{g}\left[k^{-1} h\right]=k g \psi\left(g^{-1}\right) k^{-1} h \psi(g) \\
\eta_{k g \psi\left(g^{-1}\right) k^{-1} \psi(g)}[h] & =\left(k g \psi\left(g^{-1}\right) k^{-1} \psi(g)\right) \psi\left(g^{-1}\right) h \psi(g),
\end{aligned}
$$

which are clearly equal, giving:

Theorem

Let $\psi: G \rightarrow G$ be abelian. Then

$$
N=\left\{\lambda(g) C\left(\psi\left(g^{-1}\right)\right): g \in G\right\}
$$

is a regular, G-stable subgroup of G.

Old example

Theorem

Let $\psi: G \rightarrow G$ be abelian. Then

$$
N=\left\{\lambda(g) C\left(\psi\left(g^{-1}\right)\right): g \in G\right\}
$$

is a regular, G-stable subgroup of G.

Example

Let $G=D_{4}=\langle r, s\rangle, \psi(r)=1, \psi(s)=s$.
Then

$$
\begin{aligned}
\lambda(r) C\left(\psi\left(r^{-1}\right)\right)[g] & =r g \\
\lambda(s) C\left(\psi\left(s^{-1}\right)\right) & =s s g s=g s
\end{aligned}
$$

The regular subgroup is $\langle\lambda(r), \rho(s)\rangle \cong C_{4} \times C_{2}$.

Consequence II: another brace

Also, since ψ is abelian on (N, \cdot) we have

$$
\psi(a \circ b)=\psi(a b)=\psi(b a)=\psi(b \circ a)
$$

and ψ is abelian on (N, \circ).

We can apply the construction above on the abelian map on (N, \circ) and obtain a new (bi-skew) brace!

The new brace is (N, \circ, \star) with

$$
\begin{aligned}
& a \star b=a \circ \psi(\bar{a}) \circ b \circ \psi(a) \\
& \quad \stackrel{\text { eventually }}{=}\left(a \psi (a ^ { - 1 }) \left(\psi\left(a^{-1}\right) \psi(\psi(a))(b \psi(a))\left(\psi(a) \psi\left(\psi\left(a^{-1}\right)\right)\right) .\right.\right.
\end{aligned}
$$

Fixed point free case

Example

If $\psi: G \rightarrow G$ is fixed point free abelian, let $\phi: G \rightarrow G$ be given by $\phi(g)=g \psi\left(g^{-1}\right)$.
$\left.\phi(g \circ h)=\phi\left(g \psi\left(g^{-1}\right) h \psi(g)\right)=\left(g \psi\left(g^{-1}\right) h \psi(g)\right) \psi\left(\psi\left(g^{-1}\right) h^{-1} \psi(g) g^{-1}\right)\right)$ $=g \psi\left(g^{-1}\right) h \psi\left(h^{-1}\right)=\phi(g) \phi(h)$
$\phi(g \star h)=\phi(g) \circ \phi(h)$
(similarly)
So $\phi:(G, \circ, \star) \rightarrow(G, \cdot, \circ)$ is a bijective morphism of braces.
Thus $(G, \cdot, \circ) \cong(G, \circ, \star)$ as braces, and the corresponding embedding into $\operatorname{Perm}(G)$ is the same.

A disappointing example

Return to $N=\langle r, s\rangle \cong D_{4}, \psi(r)=1, \psi(s)=s$.

Then $(N, \circ) \cong C_{4} \times C_{2}$, and (N, \circ, \star) is a brace with

$$
a \star b=a \circ \psi(\bar{a}) \circ b \circ \psi(a)=a \circ b
$$

since (N, \circ) is abelian.

Thus, (N, \circ, \star) is the trivial brace (N, \circ, \circ).

Can we do this construction again?

Sure, if you want.
Define

$$
a \diamond b=a \star \psi(\tilde{a}) \star b \star \psi(a) .
$$

Then (N, \star, \diamond) is a brace.
We can do this until we run out of $\mathbb{A T}_{E} X$ binary (and unary) operation symbols.

But if we get the trivial brace at any point, we will get the trivial brace on every subsequent construction.

This seems to happen a lot.

Brace chains

Generally, if $\psi: N \rightarrow N$ is abelian we get a chain of bi-skew braces

$$
\left(N, \circ_{0}, \circ_{1}\right),\left(N, \circ_{1}, \circ_{2}\right),\left(N, \circ_{2}, \circ_{3}\right), \ldots
$$

where $a \circ_{0} b=a \cdot b=a *_{N} b$ and

$$
a \circ_{n+1} b=a \circ_{n} \psi\left(a^{\circ}(-1)\right) b \psi(a)
$$

Let us denote the chain by

$$
\left(N, \circ_{0}, \circ_{1}, \ldots\right)
$$

and define G_{i} to be the abstract group $\left(N, \circ_{i}\right)$ and form the corresponding group chain $\left(N=G_{0}, G_{1}, G_{2}, \ldots\right)$.
(Notation suggestions are most welcome.)
The number of distinct braces in a brace chain is necessarily finite.

Two familiar examples

Example (Fixed point free, revisited)

If $\psi: G \rightarrow G$ is fixed point free then the chain consists of only $\left(G, \cdot, \circ_{1}, \circ_{2} \ldots\right)$ with $\left(G, \circ_{n-1}, \circ_{n}\right) \cong(G, \cdot, \circ)$.
The corresponding group chain is

$$
(G, G, G, \ldots) .
$$

Example (Dihedral, revisited)

Let $N=D_{4}, \phi\left(r^{i} s^{j}\right)=s^{j}$ as before. We get $(N, \cdot, \circ, \circ, \ldots)$ corresponding to the group chain

$$
\left(D_{4}, C_{4} \times C_{2}, C_{4} \times C_{2}, C_{4} \times C_{2}, \ldots\right) .
$$

Even more braces

Suppose we have a brace chain $(N, \cdot,, 0, \star)$. Then $(a \star b) a^{-1}(a \star c)$ is

$$
\begin{aligned}
& a \psi\left(a^{-1}\right)^{2} \psi^{2}(a) b \psi(a)^{2} \psi^{2}\left(a^{-1}\right) a^{-1} \psi\left(a^{-1}\right)^{2} \psi^{2}(a) c \psi(a)^{2} \psi^{2}\left(a^{-1}\right) \\
& =a \psi\left(a^{-1}\right)^{2} \psi^{2}(a) b \psi(a)^{2} \psi^{2}\left(a^{-1}\right) \psi\left(a^{-1}\right)^{2} \psi^{2}(a) c \psi(a)^{2} \psi^{2}\left(a^{-1}\right) \\
& =a \psi\left(a^{-1}\right)^{2} \psi^{2}(a) b c \psi(a)^{2} \psi^{2}\left(a^{-1}\right) \\
& =a \star(b c)
\end{aligned}
$$

and the brace condition is satisfied for (N, \cdot, \star).
More elegantly, if $\psi: N \rightarrow N$ is given by $\psi(a)=\psi\left(a^{-2}\right) \psi^{2}\left(a^{-1}\right)$ then ψ is an abelian endomorphism, and $a \star b=a \Psi\left(a^{-1}\right) b \Psi(a)$.

Generally, $\left(N, o_{n-2}, o_{n}\right)$ is also a bi-skew brace.

Outline

(9) The Problem

(2) The Solution
(3) Brace classes

4 Three Examples
(5) It Gets Weirder

6 Open Questions

Predicting the group

Return to our original construction: $\psi: N \rightarrow N$ abelian gives a brace (N, \cdot, \circ).

Question

Is there any way to predict the group type of (N, \circ) ? In particular, for which ψ is $(N, \circ) \cong(N, \cdot)$?

That ψ be fixed point free is sufficient, but not necessary.
As far as I know.

Some facts

- For all $a \in N, a^{\circ}(n)=\left(a \psi\left(a^{-1}\right)\right)^{n} a^{n}$. Thus,

$$
|a|_{\circ} \leq \operatorname{lcm}\left(\left|a \psi\left(a^{-1}\right)\right| \cdot,|a| .\right)
$$

So, e.g., no group chain starting with a non-cyclic p-group will ever include a cyclic p-group.

- $K_{0}:=\operatorname{ker} \psi$ is a normal subgroup of (N, \circ) (as well as $\left.(N, \cdot)\right)$. So, e.g., a group chain containing A_{5} will contain no other groups.
- $K_{1}:=\{a \in N: \psi(a)=a\}$ is a subgroup of both (N, \cdot) and (N, \circ). Note $\left(K_{0}, \cdot, \circ\right)$ and (K_{1}, \cdot, \circ) are sub-braces of (N, \cdot, \circ).

Some more fact

$K_{0}=\operatorname{ker} \psi, K_{1}=\{a \in N: \psi(a)=a\}$.

- $K_{0} K_{1}$ is a subgroup of both (N, \cdot) and (N, \circ). In fact,

$$
\left(k_{0} k_{1}\right) \circ\left(\ell_{0} \ell_{1}\right)=\left(k_{0} \ell_{0}\right)\left(\ell_{1} k_{1}\right), k_{0}, \ell_{0} \in K_{0}, k_{1} \ell_{1} \in K_{1}
$$

$$
\text { so }\left(K_{0} K_{1}, \circ\right) \cong K_{0} \times K_{1}
$$

Example

Let $\psi: D_{4} \rightarrow D_{4}$ be given by $\psi(r)=1, \psi(s)=s$. Then $K_{0}=\langle r\rangle$ and $K_{1}=\langle s\rangle$, so

$$
(N, \circ)=\left(K_{0} K_{1}, \circ\right) \cong C_{4} \times C_{2}
$$

as we have seen.
In his 2019 bi-skew brace paper, Lindsay constructs a family of bi-skew braces in the case G is a product of complementary subgroups. That is the case here if $\left|K_{0} K_{1}\right|=G$.

A deeper dive into D_{4}

$$
K_{0}=\operatorname{ker} \psi, K_{1}=\left\{a \in D_{4}: \psi(a)=a\right\} .
$$

Question

What are the possible groups in a group chain starting with D_{4} ?

- If K_{1} is trivial then ψ is fixed point free abelian, so the group obtained is D_{4}. Assume $K_{1} \neq 1_{D_{4}}$.
- $K_{0} \triangleleft D_{4} \Rightarrow K_{0}=\left\langle r^{2}\right\rangle$ or $\left|K_{0}\right|=4$.
- If $K_{0}=\langle r\rangle$ then $\left|K_{0} K_{1}\right|=8$ and $(N, \circ) \cong C_{4} \times C_{2}$.
- If $K_{0} \cong C_{2} \times C_{2}$ then $K_{1} \cong C_{2}$, so $(N, \circ) \cong C_{2} \times C_{2} \times C_{2}$.
- If $\left|K_{0}\right|=\left|K_{1}\right|=2$ then (N, \circ) has a subgroup isomorphic to $C_{2} \times C_{2}$.

A group chain starting with D_{4} can only contain D_{4} and at most one of $C_{4} \times C_{2}, C_{2} \times C_{2} \times C_{2}$.

In particular, it is impossible to get C_{8} or Q_{8}.

Another example

Question

What are the possible groups in a group chain starting with $S_{n}, n \geq 5$?

- $K_{0}=S_{n}$ (giving the trivial brace) or $K_{0}=A_{n}$.
- Assuming $K_{0}=A_{n}$:
- If K_{1} is trivial, then we have a fixed point free map and $\left(S_{n}, \circ\right) \cong S_{n}$.
- If K_{1} is not trivial, $K_{1} \cong C_{2}$ and $\left(S_{n}, \circ\right) \cong A_{n} \times C_{2}$.

An example of the latter situation is

$$
\psi(\sigma)= \begin{cases}1 & \sigma \in A_{n} \\ (12) & \sigma \notin A_{n}\end{cases}
$$

Chain, or tree?

Question

If $\left(N, \circ_{0}, \circ_{1}, \ldots, \circ_{n}\right)$ is a chain, is $\left(N, \circ_{m}, \circ_{n}\right)$ a brace for all $m<n$?

Clearly, it suffices to show that $\left(N, \cdot, \circ_{n}\right)$ is a brace.

We do know ($N, \circ_{m}, \circ_{2^{i}+m}$) is a brace for all $i \in \mathbb{Z}^{\geq 0}$. (Follows from (N, \cdot, \star) being a brace.)

What about opposites?

Recall that any brace has an opposite brace.

Here, one formulation of the opposite is $\left(N, \cdot, \circ^{\prime}\right)$ with

$$
a \circ^{\prime} b=\psi(a) b \psi\left(a^{-1}\right) a
$$

So we really get two braces, hence two chains.

Question

Are brace chains compatible with opposites?

Isomorphism problems

Recall that if L / K is Galois, group G, and $\psi: G \rightarrow G$ is fixed point free abelian then $H=L[N]^{G}$ is isomorphic as a K-Hopf algebra to H_{λ}, the Hopf algebra which gives the canonical nonclassical Hopf-Galois structure on L / K.

This obviously doesn't extend to $\psi: N \rightarrow N$ abelian if $N \neq G$.
However, we can ask:

Question

Are the Hopf algebras corresponding to two different regular, G-stable subgroups of $\operatorname{Perm}(G), G \cong(N, \circ)$ isomorphic as Hopf algebras?

How does it end?

Question

If $\left(N, \circ_{0}, \circ_{1}, \ldots\right)$ is a chain, does it stabilize, cycle, eventually cycle or none of these?

Stabilize: $\left(N, \circ_{n-1}, \circ_{n}\right)=\left(N, \circ_{n}, \circ_{n+1}\right)$ for sufficiently large n.
Cycle: There exists a $k>0$ such that $\left(N, \circ_{n-1} \cdot \circ_{n}\right)=\left(N, \circ_{n-1+k}, \circ_{n+k}\right)$ for all n.
Cycle eventually: There exists a $k>0$ such that $\left(N, \circ_{n-1} \cdot \circ_{n}\right)=\left(N, \circ_{n-1+k}, \circ_{n+k}\right)$ for all n sufficiently large.
None of these: None of those.
All of our examples have stabilized.
"Cycle (eventually)" seems very unlikely (excluding $k=1$).
"None of these" seems impossible given the finite number of braces of any given order.

Interesting examples are needed

To date, I have no example of:
(1) a brace chain (N, \cdot, \circ, \star) with $(N, \star) \not \equiv(N, \circ)$.
(2) a brace (N, \cdot, \circ) with $(N, \circ) \cong(N, \cdot)$ which could not have come from a fixed point free abelian map.

Thank you.

