Abelian Maps, Braces, and Hopf-Galois Structures

Alan Koch

Agnes Scott College

Faux-maha, May 25, 2020

Alan Koch (Agnes Scott College)

1/53

Outline

The Problem

2 The Solution

- 3 Brace classes
- Three Examples
- It Gets Weirder
- 6 Open Questions

Recall/Notation/Conventions

Let *G* be a (finite) group, $N \leq \text{Perm}(G)$.

- We say *N* is *G*-stable if it is normalized by $\lambda(G)$.
- Associated to a regular, G-stable subgroup N ≤ Perm(G) is a (skew left) brace (N, ·, ∘): two groups satisfying the *brace relation*

$$a \circ (b \cdot c) = (a \circ b) \cdot a^{-1} \cdot (a \circ c), \ a, b, c \in N, a \cdot a^{-1} = 1_N$$

We will frequently suppress the dot.

- Regular subgroups account for all finite braces.
- Every brace (N, ·, ∘) gives a (non-degenerate set-theoretic) solution to the Yang-Baxter equation, i.e., a map R : N × N → N × N such that

$$R_{12}R_{23}R_{12} = R_{23}R_{12}R_{23}$$

where $R_{ij} : N \times N \times N \to N \times N \times N$ applies *R* to the *i*th and *j*th component.

Stordy's Senior Thesis describes a solution to the YBE based on a fixed point free abelian endomorphism ψ of *G*.

Specifically, given $\psi: \mathbf{G} \to \mathbf{G}$ the solution obtained is

$$R(g,h) = \left(\psi(g^{-1})h\psi(g), \psi(hg^{-1})h^{-1}\psi(g)g\psi(g^{-1})h\psi(gh^{-1})\right).$$

Idea

Can this be shown without using regular subgroups and braces? Can we verify it by direct computation?

Yes, eventually.

Theorem 0.1. Let G be a finite group, and let $\psi \in PPF(G)$. Then the map $R : G \times G \rightarrow G \times G$ given by

 $B(g,h) = (\psi(g^{-1})k\psi(g), \psi(kg^{-1})h^{-1}\psi(g)g\psi(g^{-1})h\psi(g)h^{-1})), g, h \in G$ is a non-degenerate set-theoretic solution is the Yang-Bayter equation.

I will point out that this can be done via beaces, but we prefer the computational version because an lastic complexe.

Proof. First we show that it is indeed a solution. It is useful to realize that the components of R(g, k) are computed by comparing k and g by certain elements respectively. Thus, as ψ is constant on complexy classes.

 $(\psi \times \psi)R(g, h) = (\psi(h), \psi(g)), g, h \in G.$

Now for $g, k, k \in G$ we have

 $R_{12}R_{23}R_{12}(g,h,k) = R_{12}R_{23}(\psi(g^{-1})h\psi(g),\psi(hg^{-1})h^{-1}\psi(g)g\psi(g^{-1})h\psi(gh^{-1}),k).$

Using the observation above allows us to reduce the above to

 $R_{11}(v(g^{-1})hv(g), v(g^{-1})hv(g), v(kg^{-1})h^{-1}v(h)h^{-1}v(g)gv(g^{-1})hv(h^{-1})hv(gh^{-1})).$ The components of the above, after R_{12} is applied, see

$\psi((gh)^{-1})k\psi(gh)$	(
$\psi((gkk^{-1})^{-2})k^{-1}\psi(h)k\psi(h^{-2})k\psi(gkk^{-1})$	6
$\psi(kg^{-1})k^{-1}\psi(h)h^{-1}\psi(g)g\psi(g^{-1})h\psi(h^{-1})k\psi(gk^{-1})$	6
On the other hand, we have	
$R_{23}R_{33}R_{23}(g,h,k) = R_{23}R_{12}(g,\psi(h^{-1})k\psi(h),\psi(hh^{-1})h^{-1}\psi(h)h\psi(h^{-1}k\psi(hk^{-1})),$	
which then becomes	

 $\frac{R_{10}(\psi(hg)^{-1})k\psi(hg),\psi(hg)k^{-1})^{-1}(k_0)g\psi((hg))^{-1})k\psi(hgk^{-1}),\psi(kh^{-1})k^{-1}\psi(h)k\psi(h^{-1}k\psi(hk^{-1})),\psi(hh^{-1})k^{-1}\psi(h)k\psi(h^{-1}k\psi(hk^{-1})),\psi(hh^{-1})k^{-1}\psi(h)k\psi(h^{-1}k\psi(hk^{-1})),\psi(hh^{-1})k^{-1}\psi(h)k\psi(h^{-1}k\psi(hk^{-1})),\psi(hh^{-1})k^{-1}\psi(h)k\psi(h^{-1}k\psi(hk^{-1})),\psi(hh^{-1})k^{-1}\psi(h)k\psi(h^{-1}k\psi(hk^{-1})),\psi(hh^{-1})k^{-1}\psi(h)k\psi(h^{-1}k\psi(hk^{-1})),\psi(hh^{-1})k^{-1}\psi(h)k\psi(h^{-1}k\psi(hk^{-1})),\psi(hh^{-1})k^{-1}\psi(h)k\psi(h^{-1}k\psi(hk^{-1})),\psi(hh^{-1})k^{-1}\psi(h)k\psi(h^{-1}k\psi(hk^{-1})),\psi(hh^{-1})k^{-1}\psi(h)k\psi(h^{-1}k\psi(hk^{-1})),\psi(hh^{-1})k^{-1}\psi(h)k\psi(hh^{-1})k\psi$

and the resu	iting components are
(1)	$\psi((hg)^{-1})k\psi(hg)$
(2)	$\psi((hk^{-1}g)^{-1})k^{-1}\psi(h)h\psi(h^{-1})k\psi(hk^{-1}g)$
(3)	$\psi(g^{-1}k)k^{-1}\psi(h)h^{-1}\psi(g)g\psi(g^{-1})h\psi(h^{-1})k\psi(k^{-1}g).$
Therefore, v non-degener	re get a solution to the Yang-Baater separation. We next show that the solution site, i.e., that
	$f_{\psi} : G \rightarrow G, f_{\psi}(h) = \psi(g^{-1})h\psi(g)$
	$f_0 : G \rightarrow G, f_0(g) = \psi(hg^{-1})h^{-1}\psi(g)g\psi(g^{-1})h\psi(gh^{-1})$
are bijection by the fixed	s for all $y, h \in G$. That f_{g} is a bijection is clear since it is simply conjugation of h - element $\psi(g^{-1})$. New suppose $f_{\lambda}(y_{1}) = f_{\lambda}(y_{2})$. Then
61	$hg_1^{-1}h^{-1}\psi(g_1)g_1\psi(g_1^{-1})h\psi(g_1h^{-1}) = \psi(hg_2^{-1})h^{-1}\psi(g_2)g_2\psi(g_2^{-1})h\psi(g_2h^{-1}).$
which simple	fies to
	$\psi(g_1^{-1})h^{-1}\psi(g_1)g_1\psi(g_1^{-1})h\psi(g_1) = \psi(g_1^{-1})h^{-1}\psi(g_2)g_2\psi(g_1^{-1})h\psi(g_2).$
If we apply (classes. Thu) to both sides we quickly see that $\psi(g_1) = \psi(g_2)$, again since ψ is constant on conjug s, we have
	$\psi(g_1^{-1})h^{-1}\psi(g_1)g_1\psi(g_1^{-1})h\psi(g_1) = \psi(g_1^{-1})h^{-1}\psi(g_1)g_2\psi(g_1^{-1})h\psi(g_1),$
giving as -	

Figure: It's a little tedious

Alan Koch (Agnes Scott College)

5/53

2

 $R = \left(\psi(g^{-1})h\psi(g),\psi(hg^{-1})h^{-1}\psi(g)g\psi(g^{-1})h\psi(gh^{-1})
ight)$

The key to showing that R is a solution is the following observation:

If $\psi : G \rightarrow G$ is abelian, then for all $g, h \in G$ we have

 $\psi(\psi(g^{-1})h\psi(g))=\psi(h).$

This is not a surprise, but what is a surprise is:

The proof never uses that ψ is fixed point free.

Regular subgroups account for all solutions

But if you drop "fixed point free", the subgroup

$$m{N}_\psi = \{\lambda(m{g})
ho(\psi(m{g})):m{g}\inm{G}\}$$

is irregular: if $\psi(g) = g$ then $\lambda(g)\rho(\psi(g))[\mathbf{1}_G] = \mathbf{1}_G$.

How are we getting solutions to the YBE which don't come from regular *G*-stable subgroups?

The Problem

2 The Solution

- Brace classes
- Three Examples
- 5 It Gets Weirder
- Open Questions

Alan Koch (Agnes Scott College)

• • • • • • • • • • • •

æ

Perspective and notation change. The abelian endomorphisms will often be on a group which we denote *N* instead of *G*.

Definition

An endomorphism $\psi : N \to N$ is said to be *abelian* if $\psi(N)$ is abelian.

Equivalently, $\psi(ab) = \psi(ba)$ for all $a, b \in N$.

Proposition

Let $\psi : N \rightarrow N$ be abelian. Define a binary operation \circ on N via

 $a \circ b = a\psi(a^{-1})b\psi(a), \ a, b \in N.$

Then (N, \cdot, \circ) is a brace, where \cdot is the usual operation on N.

э

・ロト ・四ト ・ヨト ・ヨト

We need to show (N, \circ) is a group and that the brace relation holds.

Clearly $a \circ 1_N = 1_N \circ a = a$. For associative:

$$(a \circ b) \circ c = (a\psi(a^{-1})b\psi(a)) \circ c$$

= $(a\psi(a^{-1})b\psi(a))\psi(\psi(a^{-1})b^{-1}\psi(a)a^{-1})c\psi(a\psi(a^{-1})b\psi(a))$
= $(a\psi(a^{-1})b\psi(a))\psi(b^{-1}a^{-1})c\psi(ab)$ (ψ abelian)
= $a\psi(a^{-1})b\psi(b^{-1})c\psi(b)\psi(a)$ (ψ abelian)
= $a\psi(a^{-1})(b \circ c)\psi(a)$
= $a \circ (b \circ c)$.

< ロ > < 同 > < 回 > < 回 >

$a \circ b = a\psi(a^{-1})b\psi(a)$

Let
$$x = \psi(a)a^{-1}\psi(a^{-1})$$
. Claim $x = \overline{a}$.

$$a \circ x = a\psi(a^{-1})(\psi(a)a^{-1}\psi(a^{-1}))\psi(a) = 1_N$$

$$x \circ a = (\psi(a)a^{-1}\psi(a^{-1}))\psi(\psi(a)a\psi(a^{-1}))a\psi(\psi(a)a^{-1}\psi(a^{-1}))$$

$$= \psi(a)a^{-1}\psi(a^{-1})\psi(a)a\psi(a^{-1}) \qquad (\psi \text{ abelian})$$

$$= 1_N.$$

So (N, \circ) is a group; and

$$(a \circ b)a^{-1}(a \circ c) = a\psi(a^{-1})b\psi(a)a^{-1}a\psi(a^{-1})c\psi(a)$$
$$= a\psi(a^{-1})bc\psi(a)$$
$$= a \circ (bc),$$

hence (N, \cdot, \circ) is a brace.

イロト イ団ト イヨト イヨト

Proposition

Let $\psi : N \rightarrow N$ be an abelian map. Then (N, \cdot, \circ) is a brace, where

$$a \cdot b = ab$$

 $a \circ b = a\psi(a^{-1})b\psi(a).$

This allows for a very easy way to construct (some) braces.

Remark

If ψ is fixed point free then $(N, \circ) \cong (N, \cdot)$.

If ψ has fixed points then (N, \circ) may not be isomorphic to (N, \cdot) .

イロト イヨト イヨト イ

Question

Do different choices of abelian maps ψ give different braces?

Not necessarily.

For example, if $\psi(N) \leq Z(N)$ (center of *N*) then for all $a, b, \in N$:

$$a \circ b = a\psi(a^{-1})b\psi(a) = ab$$

and we get the trivial brace (N, \cdot, \cdot) .

Adapting Lindsay's Result I

Suppose ψ_1, ψ_2 are abelian maps on *N* which give the same brace. Then

$$a\psi_1(a^{-1})b\psi_1(a) = a\psi_2(a^{-1})b\psi_2(a), \ a, b \in N.$$

For each *a*, let $z_a = \psi_2(a)\psi_1(a^{-1})$. Then $\psi_2(a) = z_a\psi_1(a)$ and

$$\psi_1(a^{-1})b\psi_1(a) = \psi_1(a^{-1})z_a^{-1}bz_a\psi_1(a)$$

 $b = z_a^{-1}bz_a$

for all $b \in N$, hence $z_a \in Z(N)$ for all a. Note that $a \mapsto z_a$ is a homomorphism since

$$\begin{aligned} z_{ab} &= \psi_2(ab)\psi_1(b^{-1}a^{-1}) = \psi_2(a)(\psi_2(b)\psi_1(b^{-1}))\psi_1(a^{-1}) \\ &= \psi_2(a)z_b\psi_1(a^{-1}) = \psi_2(a)\psi_1(a^{-1})z_b = z_az_b. \end{aligned}$$

This homomorphism is clearly abelian.

Adapting Lindsay's Result II

Conversely, let ψ_1, ψ_2 be abelian maps on N such that $\psi_2(a) = z_a \psi_1(a)$ for all $a \in N$, where $z_a \in Z(N)$.

Denoting the corresponding circle operations by \circ_1 and \circ_2 ,

$$a \circ_2 b = a\psi_2(a^{-1})b\psi_2(a) = a\psi_1(a^{-1})z_a^{-1}bz_a\psi_1(a)$$

= $a\psi_1(a^{-1})b\psi_1(a)$
= $a \circ_1 b$.

Letting $\zeta(a) = z_a$ gives:

Proposition

Two abelian maps ψ_1, ψ_2 give the same brace if and only if $\psi_2(a) = \zeta(a)\psi_1(a)$ for some homomorphism $\zeta : N \to Z(N)$.

イロト イヨト イヨト イヨト

Brace to regular subgroup?

With ψ as above, (N, \cdot, \circ) is a brace.

We can realize (N, \cdot) as a subgroup of $Perm(N, \circ)$ via

$$a[b] = a \cdot b.$$

If (N, \circ) is isomorphic to some abstract group G, say $\phi : (N, \circ) \to G$, then we can view $N \leq \text{Perm}(G)$ via

$$\boldsymbol{a}[\boldsymbol{g}] = \boldsymbol{\phi}(\boldsymbol{a} \cdot \boldsymbol{\phi}^{-1}(\boldsymbol{g})).$$

This construction is one pullback of the map

 $\{N \leq \text{Perm}(G) \text{ Regular, } G \text{-stable}\} \Rightarrow \{(B, \cdot, \circ) : (B, \cdot) \cong N, (B, \circ) \cong G\}.$

・ロト ・ 四ト ・ ヨト ・ ヨト

The Problem

2 The Solution

- 3 Brace classes
- Three Examples
- 5 It Gets Weirder
- Open Questions

Proposition (The proposition)

Let ψ be an abelian map on (N, \cdot) , and let (N, \circ) be as defined above. Suppose $\phi : (N, \circ) \to G$ is an isomorphism. Then there is a regular, G-stable subgroup $N_{\psi,\phi} = \{\eta_a : a \in N\}$ of Perm(G) given by

$$\eta_{\boldsymbol{a}}[\boldsymbol{g}] = \phi(\boldsymbol{a} \cdot \phi^{-1}(\boldsymbol{g})).$$

Furthermore, $N_{\psi,\phi} \cong (N, \cdot)$.

Problem

The exact regular subgroup depends on the chosen isomorphism ϕ .

Turns out we get a different, but related, subgroup in general when we use a different isomorphism $(N, \circ) \rightarrow G$.

・ロ・・ (日・・ モ・・ ・ 日・・

Definition

Let *G* be a finite group, and let N_1 , N_2 be regular, *G*-stable subgroups of Perm(*G*). We say N_1 and N_2 are *brace equivalent* if their corresponding braces are isomorphic. An equivalence class of regular subgroups is called a *brace class*.

It is known that the brace class containing N is

$$\{\varphi^{-1}N\varphi:\varphi\in\operatorname{Aut}(G)\}.$$

Varying ϕ

If $\phi_1, \phi_2 : (N, \circ) \to G$ are isomorphisms then their corresponding regular, *G*-stable subgroups N_1, N_2 are brace equivalent. (Clear.)

Conversely, if N_1 , given by an abelian map ψ and a chosen isomorphism $\phi_1 : (N, \circ) \to G$, is brace equivalent to N_2 , then $N_2 = \varphi^{-1} N_1 \varphi$ for some $\varphi \in \text{Aut}(G)$.

For any $\eta'_{a} = \varphi^{-1} \eta_{a} \varphi \in N_{2}$ we have

$$\eta'_{a}[g] = \varphi^{-1} \eta_{a} \varphi[g]$$

$$= \varphi^{-1} \eta_{a}[\varphi(g)]$$

$$= \varphi^{-1} \phi_{1}(a \cdot \phi^{-1}(\varphi(g)))$$

$$= (\varphi^{-1} \phi_{1})(a \cdot (\varphi^{-1} \phi_{1})^{-1}(g))$$

Let $\phi_2 = \varphi^{-1}\psi_1$. Then $\phi_2 : (N, \circ) \to G$ is an isomorphism and $\eta'_a = \phi_2(a \cdot \phi_2^{-1}(g))$.

- 4 週 ト 4 ヨ ト 4 ヨ ト -

Given an abelian map ψ , the set of regular subgroups obtained forms an entire brace class.

Note: K.-Truman previously established this in the case ψ is fixed point free and abelian.

The Problem

2 The Solution

- 3 Brace classes
- 4 Three Examples
- 5 It Gets Weirder
- 6 Open Questions

• • • • • • • • • • • •

-

Recovering Lindsay

Suppose $\psi : G \to G$ is fixed point free and abelian. Then $\phi : (G, \circ) \to (G, \cdot)$ given by $\phi(g) = g\psi(g^{-1})$ is an isomorphism: we have

$$\begin{split} \phi(g \circ h) &= \phi(g\psi(g^{-1})h\psi(g)) \\ &= \left(g\psi(g^{-1})h\psi(g)\right)\psi(\psi(g^{-1})h^{-1}\psi(g)g^{-1}) \\ &= g\psi(g^{-1})h\psi(g)\psi(h^{-1}g^{-1}) \\ &= g\psi(g^{-1})h\psi(h^{-1}) \\ &= \phi(g)\phi(h), \end{split}$$

and by fixed point freeness, ker ϕ is trivial. Then (G, \cdot) acts on itself via $g[h] = \phi(g \cdot \phi^{-1}(h))$, hence if $h = k\psi(k^{-1})$,

$$g[h] = \phi(gk) = gk\psi(k^{-1}g^{-1}) = g(k\psi(k^{-1})\psi(g^{-1}))$$

= $gh\psi(g^{-1}) = \lambda(g)\rho(\psi(g))[h].$

A dihedral example

Let
$$N = D_4 = \langle r, s : r^4 = s^2 = rsrs = 1 \rangle$$
.
Define $\psi : D_4 \to D_4$ by $\psi(r) = 1$, $\psi(s) = s$.
 $\psi(D_4) = \langle s \rangle$ so ψ is abelian.
Since $\psi(r^i) = 1$ for all $i, r^i \circ a = r^i a$ for all $a \in N$. Also,
 $r^i s \circ r^j = r^i s \psi(r^i s) r^j \psi(r^i s) = r^i s s r^j s = r^{i+j} s$
 $r^i s \circ r^j s = r^i s \psi(r^i s) r^j s \psi(r^i s) = r^i s s r^j s s = r^{i+j}$.
In general, $r^i s^k \circ r^j s^\ell = r^{i+j} s^{k+\ell}$ and $(N, \circ) \cong C_4 \times C_2$.
Explicitly $\phi : (N \circ) \to C : \times C_2 = \langle x, y \rangle$, $\phi(r) = x, \phi(s) = y$ is

Explicitly, $\phi : (N, \circ) \rightarrow C_4 \times C_2 = \langle x, y \rangle, \ \phi(r) = x, \ \phi(s) = y$ is an isomorphism.

æ

イロン イ理 とく ヨン イヨン

$\phi: (N, \circ) \rightarrow C_4 \times C_2 = \langle \overline{x, y} \rangle, \ \phi(r) = \overline{x}, \ \phi(s) = \overline{y}$

$$r^i s^k \circ r^j s^\ell = r^{i+j} s^{k+\ell}$$

Let us realize *N* as a subgroup of $Perm(C_4 \times C_2)$ using ϕ . Write $r^{\circ m} = \underbrace{r \circ \cdots \circ r}_{m \text{ times}}$.

$$\eta_r[x^i] = \phi(r\phi^{-1}(x^i)) = \phi(r \cdot r^i) = \phi(r^{i+1}) = \phi(r^{\circ(i+1)}) = x^{i+1}$$

$$\eta_r[x^i y] = \phi(r\phi^{-1}(x^i y)) = \phi(r \cdot r^i s) = \phi(r^{i+1} s) = \phi(r^{\circ(i+1)} \circ s) = x^{i+1} y.$$

So $\eta_r = \lambda(x)$, and

$$\eta_{\boldsymbol{s}}[\boldsymbol{x}^{i}] = \phi(\boldsymbol{s} \cdot \boldsymbol{r}^{i}) = \phi(\boldsymbol{r}^{-i}\boldsymbol{s}) = \phi(\boldsymbol{r}^{\circ(-i)} \circ \boldsymbol{s}) = \boldsymbol{x}^{-i}\boldsymbol{y}$$
$$\eta_{\boldsymbol{s}}[\boldsymbol{x}^{i}\boldsymbol{y}] = \phi(\boldsymbol{s} \cdot (\boldsymbol{r}^{i}\boldsymbol{s})) = \phi(\boldsymbol{r}^{-i}) = \phi(\boldsymbol{r}^{\circ(-i)}) = \boldsymbol{x}^{-i}.$$

イロト イポト イヨト イヨト 二日

Another dihedral example: $N = \langle r, s \rangle \cong D_4$

Define
$$\psi : \mathbf{N} \to \mathbf{N}$$
 by $\psi(\mathbf{r}) = \mathbf{rs}, \psi(\mathbf{s}) = 1. \ \psi(\mathbf{N}) = \langle \mathbf{rs} \rangle.$

Note (consider cases based on parity of *i*):

$$r^{i} \circ r^{i} = r^{i}(rs)^{i}r^{i}(rs)^{i} = 1$$

$$r^{i}s \circ r^{i}s = r^{i}s(rs)^{i}r^{i}s(rs)^{i} = 1.$$

So every nontrivial element of (N, \circ) has order 2.

$$(N,\circ)\cong C_2\times C_2\times C_2.$$

Further details are left to the audience.

The Problem

2 The Solution

- 3 Brace classes
- Three Examples
- 5 It Gets Weirder
- Open Questions

ψ is a homomorphism

Let ψ be an abelian map on *N*, and define (N, \circ) as above. Then, for all $a, b \in N$,

$$\psi(\mathbf{a}) \circ \psi(\mathbf{b}) = \psi(\mathbf{a})\psi(\psi(\mathbf{a}^{-1}))\psi(\mathbf{b})\psi(\psi(\mathbf{a}))$$
$$= \psi(\mathbf{a}\psi(\mathbf{a}^{-1})\mathbf{b}\psi(\mathbf{a}))$$
$$= \psi(\mathbf{a} \circ \mathbf{b})$$

So ψ is an endomorphism of (N, \circ) . Furthermore,

$$\psi(a) \circ \psi(b) = \psi(a \circ b) = (a\psi(a^{-1})b\psi(a)) = \psi(ab) = \psi(a)\psi(b)$$

shows that:

- $\psi: (N, \cdot) \to (N, \cdot)$ is an endomorphism
- $\psi: (N, \cdot) \rightarrow (N, \circ)$ is a homomorphism
- $\psi: (\mathbf{N}, \circ) \to (\mathbf{N}, \cdot)$ is a homomorphism
- $\psi : (\mathbf{N}, \circ) \to (\mathbf{N}, \circ)$ is an endomorphism.

イロン イ団と イヨン 一

Question

Given the "symmetric interplay" created by ψ , could (N, \cdot, \circ) be a bi-skew brace?

Recall Lindsay's construction (with my notation):

Definition

A triple (B, \cdot, \circ) is a *bi-skew brace* if both (B, \cdot, \circ) and (B, \circ, \cdot) are braces.

Thus, (B, \cdot, \circ) is a bi-skew brace if (B, \cdot) and (B, \circ) are groups and

$$a \circ (bc) = (a \circ b)a^{-1}(a \circ c)$$

 $a(b \circ c) = (ab) \circ \overline{a} \circ (ac)$

hold for all $a, b, c \in B$.

A (10) A (10) A (10)

$a(b \circ c) = (ab) \circ \overline{a} \circ (ac)$

Let's see if the second brace relation holds.

Recall
$$\overline{a} = \psi(a)a^{-1}\psi(a^{-1})$$
.
 $a(b \circ c) = ab\psi(b^{-1})c\psi(b)$
 $(ab) \circ \overline{a} \circ (ac) = ab\psi(b^{-1}a^{-1})\psi(a)a^{-1}\psi(a^{-1})\psi(ab) \circ (ac)$
 $= ab\psi(b^{-1})a^{-1}\psi(b) \circ (ac)$
 $= (ab\psi(b^{-1})a^{-1}\psi(b))\psi(b^{-1})ac\psi(b)$
 $= ab\psi(b^{-1})c\psi(b)$.

Proposition

An abelian map $\psi : N \rightarrow N$ gives rise to a bi-skew brace.

・ロト ・ 四ト ・ ヨト ・ ヨト

10 Minutes ago

An abelian map ψ on N gives a regular, G-stable subgroup of Perm(G) for some G isomorphic to (N, \circ) .

Interesting, but a little backward if you are trying to find Hopf-Galois structures on L/K with Gal(L/K) = G.

Now

An abelian map ψ on *G* gives a regular, *G*-stable subgroup $N \leq \text{Perm}(G)$ with $N \cong (G, \circ)$.

$$\psi$$
 on $G \Rightarrow$ brace $(G, \cdot, \circ) \Rightarrow$ brace (G, \circ, \cdot) .

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

This can be made quite explicit, and proven directly. Given ψ , let $N = \{\eta_g : g \in G\} \leq \text{Perm}(G)$, where

$$\eta_{g}[h] = g\psi(g^{-1})h\psi(g).$$

(So $\eta_g = \lambda(g)C(\psi(g^{-1}))$, *C* conjugation.) *N* is regular. If $\eta_g[h] = h$ then $g\psi(g^{-1})h\psi(g) = h$. Taking ψ of both sides:

$$\psi(gh) = \psi(h)$$

so $g \in \ker \psi$, hence

$$h = g\psi(g^{-1})h\psi(g) = gh$$

whence $g = 1_G$.

< ロ > < 同 > < 三 > < 三 >

N is *G*-stable. Claim ${}^{k}\eta_{g} = \eta_{kg\psi(g^{-1})k^{-1}\psi(g)}, \ k \in G.$

$$^{k}\eta_{g}[h] = k\eta_{g}[k^{-1}h] = kg\psi(g^{-1})k^{-1}h\psi(g)$$

$$\eta_{kg\psi(g^{-1})k^{-1}\psi(g)}[h] = (kg\psi(g^{-1})k^{-1}\psi(g))\psi(g^{-1})h\psi(g),$$

which are clearly equal, giving:

Theorem

Let ψ : $G \rightarrow G$ be abelian. Then

$$N = \{\lambda(g)C(\psi(g^{-1})) : g \in G\}$$

is a regular, G-stable subgroup of G.

イロト イ理ト イヨト イヨト

Old example

Theorem

Let $\psi : \mathbf{G} \to \mathbf{G}$ be abelian. Then

$$\textit{\textit{N}} = \{\lambda(\textit{g})\textit{\textit{C}}(\psi(\textit{g}^{-1})): \textit{g} \in \textit{G}\}$$

is a regular, G-stable subgroup of G.

Example

Let
$$G = D_4 = \langle r, s \rangle$$
, $\psi(r) = 1$, $\psi(s) = s$.
Then

$$egin{aligned} \lambda(r)\mathcal{C}(\psi(r^{-1}))[g] &= rg\ \lambda(s)\mathcal{C}(\psi(s^{-1})) &= ssgs = gs \end{aligned}$$

The regular subgroup is $\langle \lambda(\mathbf{r}), \rho(\mathbf{s}) \rangle \cong C_4 \times C_2$.

ヘロン 人間と 人間と 人間と

Consequence II: another brace

Also, since ψ is abelian on (N, \cdot) we have

$$\psi(a \circ b) = \psi(ab) = \psi(ba) = \psi(b \circ a)$$

and ψ is abelian on (N, \circ) .

We can apply the construction above on the abelian map on (N, \circ) and obtain a new (bi-skew) brace!

The new brace is (N, \circ, \star) with

$$\begin{aligned} \mathbf{a} \star \mathbf{b} &= \mathbf{a} \circ \psi(\overline{\mathbf{a}}) \circ \mathbf{b} \circ \psi(\mathbf{a}) \\ &\stackrel{\text{eventually}}{=\!=\!=\!=} (\mathbf{a}\psi(\mathbf{a}^{-1})(\psi(\mathbf{a}^{-1})\psi(\psi(\mathbf{a}))(\mathbf{b}\psi(\mathbf{a}))(\psi(\mathbf{a})\psi(\psi(\mathbf{a}^{-1})))). \end{aligned}$$

Example

If $\psi : G \to G$ is fixed point free abelian, let $\phi : G \to G$ be given by $\phi(g) = g\psi(g^{-1})$.

$$\begin{split} \phi(g \circ h) &= \phi(g\psi(g^{-1})h\psi(g)) = (g\psi(g^{-1})h\psi(g))\psi(\psi(g^{-1})h^{-1}\psi(g)g^{-1})) \\ &= g\psi(g^{-1})h\psi(h^{-1}) = \phi(g)\phi(h) \\ \phi(g \star h) &= \phi(g) \circ \phi(h) \end{split}$$
(similarly)

So $\phi : (G, \circ, \star) \to (G, \cdot, \circ)$ is a bijective morphism of braces. Thus $(G, \cdot, \circ) \cong (G, \circ, \star)$ as braces, and the corresponding embedding into Perm(G) is the same.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Return to
$$N = \langle r, s \rangle \cong D_4$$
, $\psi(r) = 1, \psi(s) = s$.

Then $(N, \circ) \cong C_4 \times C_2$, and (N, \circ, \star) is a brace with

$$a \star b = a \circ \psi(\overline{a}) \circ b \circ \psi(a) = a \circ b$$

since (N, \circ) is abelian.

Thus, (N, \circ, \star) is the trivial brace (N, \circ, \circ) .

Sure, if you want.

Define

$$a \diamond b = a \star \psi(\tilde{a}) \star b \star \psi(a).$$

Then (N, \star, \diamond) is a brace.

We can do this until we run out of $\ensuremath{\mathbb E} T_E X$ binary (and unary) operation symbols.

But if we get the trivial brace at any point, we will get the trivial brace on every subsequent construction.

This seems to happen a lot.

< □ > < 同 > < 三 > < 三 >

Brace chains

Generally, if $\psi : N \rightarrow N$ is abelian we get a *chain* of bi-skew braces

$$(N,\circ_0,\circ_1),(N,\circ_1,\circ_2),(N,\circ_2,\circ_3),\ldots$$

where $a \circ_0 b = a \cdot b = a *_N b$ and

$$a \circ_{n+1} b = a \circ_n \psi(a^{\circ_n(-1)})b\psi(a).$$

Let us denote the chain by

$$(N, \circ_0, \circ_1, \dots)$$

and define G_i to be the abstract group (N, \circ_i) and form the corresponding *group chain* $(N = G_0, G_1, G_2, ...)$.

(Notation suggestions are most welcome.)

The number of distinct braces in a brace chain is necessarily finite.

Example (Fixed point free, revisited)

If $\psi : G \to G$ is fixed point free then the chain consists of only $(G, \cdot, \circ_1, \circ_2 \dots)$ with $(G, \circ_{n-1}, \circ_n) \cong (G, \cdot, \circ)$. The corresponding group chain is

$$(G, G, G, \ldots).$$

Example (Dihedral, revisited)

Let $N = D_4$, $\phi(r^i s^j) = s^j$ as before. We get $(N, \cdot, \circ, \circ, ...)$ corresponding to the group chain

$$(D_4, C_4 \times C_2, C_4 \times C_2, C_4 \times C_2, \dots).$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Suppose we have a brace chain (N, \cdot, \circ, \star) . Then $(a \star b)a^{-1}(a \star c)$ is

$$\begin{aligned} a\psi(a^{-1})^2\psi^2(a)b\psi(a)^2\psi^2(a^{-1})a^{-1}\psi(a^{-1})^2\psi^2(a)c\psi(a)^2\psi^2(a^{-1})\\ &=a\psi(a^{-1})^2\psi^2(a)b\psi(a)^2\psi^2(a^{-1})\psi(a^{-1})^2\psi^2(a)c\psi(a)^2\psi^2(a^{-1})\\ &=a\psi(a^{-1})^2\psi^2(a)bc\psi(a)^2\psi^2(a^{-1})\\ &=a\star(bc)\end{aligned}$$

and the brace condition is satisfied for (N, \cdot, \star) .

More elegantly, if $\Psi : N \to N$ is given by $\Psi(a) = \psi(a^{-2})\psi^2(a^{-1})$ then Ψ is an abelian endomorphism, and $a \star b = a\Psi(a^{-1})b\Psi(a)$.

Generally, $(N, \circ_{n-2}, \circ_n)$ is also a bi-skew brace.

The Problem

2 The Solution

- 3 Brace classes
- Three Examples
- 5 It Gets Weirder

Return to our original construction: $\psi : N \to N$ abelian gives a brace (N, \cdot, \circ) .

Question

Is there any way to predict the group type of (N, \circ) ? In particular, for which ψ is $(N, \circ) \cong (N, \cdot)$?

That ψ be fixed point free is sufficient, but not necessary.

As far as I know.

イロン イ理 とくほとく ほ

• For all
$$a \in N$$
, $a^{\circ(n)} = (a\psi(a^{-1}))^n a^n$. Thus,

$$|\boldsymbol{a}|_{\circ} \leq \operatorname{lcm}(|\boldsymbol{a}\psi(\boldsymbol{a}^{-1})|_{\cdot}, |\boldsymbol{a}|_{\cdot}).$$

So, e.g., no group chain starting with a non-cyclic *p*-group will ever include a cyclic *p*-group.

- *K*₀ := ker ψ is a normal subgroup of (*N*, ∘) (as well as (*N*, ·)).
 So, e.g., a group chain containing *A*₅ will contain no other groups.
- *K*₁ := {*a* ∈ *N* : ψ(*a*) = *a*} is a subgroup of both (*N*, ·) and (*N*, ∘). Note (*K*₀, ·, ∘) and (*K*₁, ·, ∘) are sub-braces of (*N*, ·, ∘).

Some more fact

$$K_0 = \ker \psi, \ K_1 = \{ a \in N : \psi(a) = a \}.$$

• K_0K_1 is a subgroup of both (N, \cdot) and (N, \circ) . In fact,

 $(k_0k_1) \circ (\ell_0\ell_1) = (k_0\ell_0)(\ell_1k_1), \ k_0, \ell_0 \in K_0, \ k_1\ell_1 \in K_1$

so $(K_0K_1, \circ) \cong K_0 \times K_1$.

Example

Let $\psi : D_4 \to D_4$ be given by $\psi(r) = 1, \psi(s) = s$. Then $K_0 = \langle r \rangle$ and $K_1 = \langle s \rangle$, so

$$(N,\circ)=(K_0K_1,\circ)\cong C_4\times C_2,$$

as we have seen.

In his 2019 bi-skew brace paper, Lindsay constructs a family of bi-skew braces in the case *G* is a product of complementary subgroups. That is the case here if $|K_0K_1| = G$.

A deeper dive into D_4

$$K_0 = \ker \psi, \ K_1 = \{ a \in D_4 : \psi(a) = a \}.$$

Question

What are the possible groups in a group chain starting with D_4 ?

If K₁ is trivial then ψ is fixed point free abelian, so the group obtained is D₄. Assume K₁ ≠ 1_{D₄}.

•
$$K_0 \triangleleft D_4 \Rightarrow K_0 = \langle r^2 \rangle$$
 or $|K_0| = 4$.

- If $K_0 = \langle r \rangle$ then $|K_0K_1| = 8$ and $(N, \circ) \cong C_4 \times C_2$.
- If $K_0 \cong C_2 \times C_2$ then $K_1 \cong C_2$, so $(N, \circ) \cong C_2 \times C_2 \times C_2$.
- If |K₀| = |K₁| = 2 then (N, ∘) has a subgroup isomorphic to C₂ × C₂.

A group chain starting with D_4 can only contain D_4 and at most one of $C_4 \times C_2$, $C_2 \times C_2 \times C_2$.

In particular, it is impossible to get C_8 or Q_8 .

Question

What are the possible groups in a group chain starting with S_n , $n \ge 5$?

- $K_0 = S_n$ (giving the trivial brace) or $K_0 = A_n$.
- Assuming $K_0 = A_n$:
 - If K_1 is trivial, then we have a fixed point free map and $(S_n, \circ) \cong S_n$.
 - If K_1 is not trivial, $K_1 \cong C_2$ and $(S_n, \circ) \cong A_n \times C_2$.

An example of the latter situation is

$$\psi(\sigma) = \begin{cases} 1 & \sigma \in A_n \\ (12) & \sigma \notin A_n \end{cases}.$$

< ロ > < 同 > < 回 > < 回 >

Question

If $(N, \circ_0, \circ_1, \dots, \circ_n)$ is a chain, is (N, \circ_m, \circ_n) a brace for all m < n?

Clearly, it suffices to show that (N, \cdot, \circ_n) is a brace.

We do know $(N, \circ_m, \circ_{2^i+m})$ is a brace for all $i \in \mathbb{Z}^{\geq 0}$. (Follows from (N, \cdot, \star) being a brace.)

A (10) F (10) F (10)

Recall that any brace has an opposite brace.

Here, one formulation of the opposite is (N, \cdot, \circ') with

$$a \circ' b = \psi(a)b\psi(a^{-1})a.$$

So we really get two braces, hence two chains.

Question

Are brace chains compatible with opposites?

Recall that if L/K is Galois, group G, and $\psi : G \to G$ is fixed point free abelian then $H = L[N]^G$ is isomorphic as a K-Hopf algebra to H_{λ} , the Hopf algebra which gives the canonical nonclassical Hopf-Galois structure on L/K.

This obviously doesn't extend to $\psi : N \to N$ abelian if $N \not\cong G$.

However, we can ask:

Question

Are the Hopf algebras corresponding to two different regular, *G*-stable subgroups of Perm(G), $G \cong (N, \circ)$ isomorphic as Hopf algebras?

< ロ > < 同 > < 回 > < 回 >

Question

If $(N, \circ_0, \circ_1, ...)$ is a chain, does it stabilize, cycle, eventually cycle or none of these?

Stabilize: $(N, \circ_{n-1}, \circ_n) = (N, \circ_n, \circ_{n+1})$ for sufficiently large *n*.

Cycle: There exists a k > 0 such that $(N, \circ_{n-1} . \circ_n) = (N, \circ_{n-1+k}, \circ_{n+k})$ for all *n*.

Cycle eventually: There exists a k > 0 such that $(N, \circ_{n-1} . \circ_n) = (N, \circ_{n-1+k}, \circ_{n+k})$ for all *n* sufficiently large.

None of these: None of those.

All of our examples have stabilized.

"Cycle (eventually)" seems very unlikely (excluding k = 1).

"None of these" seems impossible given the finite number of braces of any given order.

・ロト ・ 四ト ・ ヨト ・ ヨト …

To date, I have no example of:

- **1** a brace chain (N, \cdot, \circ, \star) with $(N, \star) \ncong (N, \circ)$.
- ② a brace (N, \cdot, \circ) with $(N, \circ) \cong (N, \cdot)$ which could not have come from a fixed point free abelian map.

Thank you.

æ

イロト イロト イヨト イヨト